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Quantitative structure–activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. 
Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex 
(MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. 
Historically, such approaches have been built around semi-qualitative, classification methods, but these are now 
giving way to quantitative regression methods. The additive method, an established immunoinformatics technique 
for the quantitative prediction of peptide–protein affinity, was used here to identify the sequence dependence of 
peptide binding specificity for three mouse class I MHC alleles: H2–Db, H2–Kb and H2–Kk. As we show, in terms of 
reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate 
prediction of T-cell epitopes and are freely available online (http://www.jenner.ac.uk/MHCPred).

Introduction
Quantitative structure–activity relationship (QSAR) analysis, 
as a predictive tool of wide applicability, is one of the main 
cornerstones of modern cheminformatics and increasingly, 
bioinformatics. Immunoinformatics, a newly emergent sub-
discipline of bioinformatics which addresses informatic 
problems within immunology, uses QSAR technology to tackle 
the crucial issue of epitope prediction. As high throughput 
biology reveals the genomic sequences of pathogenic bacteria, 
viruses, and parasites, such prediction will become increasingly 
important in the post-genomic discovery of novel vaccines, 
reagents, and diagnostics.

In the unending war between host and pathogen, the adap-
tive immune system has been the primary vertebrate defence for 
500 million years. At the heart of cellular adaptive immunity is 
a set of  molecular recognition events: premier amongst them 
is the cell surface recognition of peptide-bound major histo-
compatibility complexes (MHC) by T-cells. The T-cell is a 
specialised type of immune cell that mediates cellular immu-
nity. T-Cells contribute to immune defences in two main ways: 
regulating the complex workings of the immune system and, 
more directly, by eliminating infected or malignant cells. The 
short antigenic peptides recognised by T-cells are a form of 
epitope: in this case, markers of foreign or host proteins. The 
biological role of MHC proteins is thus to bind small peptides 
derived from both pathogen and host protein and to “present” 
these for inspection by T-cells. T-Cells recognise peptide-MHC 
(pMHC) complexes via a special form of receptor: the T-cell 
receptor (TCR). Class I MHC molecules present endogenously 
synthesised antigens, including host and viral proteins, inducing 
a cytotoxic T-cell response. Class II MHC molecules present 
exogenously derived proteins, e.g. bacterial products or viral 
capsid proteins. MHC class I and II are distinct at the level of 
sequence and structure. This is also reflected in the geometry of 
their peptide-binding grooves and their peptide selectivities. The 
binding site of class I MHCs accommodates 8–11 amino acid 
peptides while the open-ended class II sites allows binding of 
much longer peptides, some in excess of 20 amino acids. The 

cell biology and expression pattern of each class of MHC is 
tailored to meet its distinct role. MHC class I molecules bind 
peptides in the endoplasmic reticulum (ER), which are gene-
rated continuously in the cytoplasm through protein degra-
dation, mainly by the proteasome. Peptides of 8–18 amino 
acids are specifically transported across the ER membrane by 
a heterodimeric transporter, known as transporter associated 
with antigen processing or TAP, where they then bind to class I 
MHC molecules.

The ability to predict the recognition of epitopes accurately 
is a principal goal of modern in silico immunology. Within the 
human population there are a vast number of different variant 
genes, or alleles, coding for class I and class II MHC proteins. 
Each allele exhibits different peptide selectivity: peptides are 
bound which have particular sequence patterns and with an 
affinity dependent on those sequence patterns. Typically, 
human alleles bind nonameric peptide sequences. Peptide 
selectivities of  class I MHCs are most often rationalised in 
terms of a characteristic motif  with a preference for particular 
amino acids at two or more positions. Such motifs have enjoyed 
a wide popularity within immunology, as they are both easy to 
use and easy to understand. Motifs characterise a short peptide 
in terms of dominant anchor positions with a strong preference 
for certain amino acids. Sette and co-workers1,2 defined the 
first allele-dependent sequence motifs using the mouse alleles 
I–Ed and I–Ad. There are fundamental problems with motifs, 
however, as they produce significant numbers of both false 
positives and false negatives, and are overly reliant on the choice 
of anchors. Subsequently, much more sophisticated methods 
have arisen.3 These include many using artificial intelligence 
techniques, such as artificial neural networks,4–7 hidden Markov 
models,8,9 support vector machines,10,11 and profiles.12

For understandable reasons—the desire to generate new 
vaccines and diagnostics, for example—much work has hitherto 
focussed on human alleles. The mouse—the primary experi-
mental animal in immunology—has received some attention, 
but not as much as its pre-eminent position as an instrument 
of immunological investigation might warrant. The H2 genes 
are part of the mouse MHC and forms a multi-gene cluster 
containing three major gene classes: class I located in the H2–D, 
H2–K (as discussed here), Qa and H2–T18 regions and class II 
located in the H2–I region and class III in the H2–S region.13 
MHC class I gene products of the H2–D and H2–K regions are 

† This is one of a number of contributions on the theme of molecular infor-
matics, published to coincide with the RSC Symposium “New Horizons in 
Molecular Informatics”, December 7th 2004, Cambridge UK.
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used our approach to explore the amino acid preferences of 
three mouse alleles: H2–Db (nonamers), H2–Kb (octamers) and 
H2–Kk (octamers). This paper exemplifies the first use of the 
additive method for octameric, as well as nonameric, peptides, 
and, as we show, these models represent, in terms of reliability, 
significant improvements over existing methods.

Results
For the H2–Db model, 65 nonameric peptides were used as 
the initial training set (Table 1).20–27 six peptides with residual 
values 2.0 log units were omitted, reducing the dataset to 
59 peptides. Based on the peptide sequences used here, the 
distribution of amino acids at the nine peptide positions is shown 
in Table 2. Previous analysis of H2–Db binding indicates a strong 
preference for Asn at position 5 and Ile, Leu and Met residues 
at position 9. For the H2–Db model, the LOO-CV parameters 
are q2 = 0.401, SEP = 0.840 and NC = 4, while the non-cross 
validation parameters are r2 = 0.946 and SEE = 0.252 (Table 3). 
The quantitative contributions of amino acids at each position 
for this model are shown in Fig. 1 (black bars). An extended 
motif, as defined by this model, is summarised in Table 4. The 
results show that the peptide sequences in the H2–Db allele have 
the same anchor positions (Asn at position 5 and Met, Ile or 
Leu at the C terminus (position 9)) as seen previously.20–23 This 
was expected because of the limited number of amino acids at 
these positions. Inspection of Fig. 1 allows us to determine the 
influence on binding affinity to H2–Db of certain amino acids at 
each non-anchor positions. For example, hydrophobic residues 
such as Phe, Ile, Leu, Val and Pro were found at strong binding 
positions 1, 3 and 8. Amino acids Ser, Thr and Cys were the 
only residues with hydroxyl or sulfhydryl containing side chains 
found at strong binding positions (position 4). It is interesting 
to note that certain amino acids, such as positively charged (His 
and Lys), neutral (Asn) or small (Ala) residues, exhibited low 
occupancy of non-anchor position.

found on most cells except in very early embryos and function 
in cytolytic immune responses. Allogenic differences at these 
loci induce vigorous graft rejection and strong primary in vitro 
cytotoxic responses.

Although crystallographic analysis confirms the high overall 
similarity of human and mouse MHC structures, there are, 
nonetheless, clear differences in their peptide specificities: 
for example, experimental analysis of  eluted mouse peptides 
indicates a preference for both nonameric (nine amino acid) and 
octameric (eight amino acid) peptides. The mouse class I peptide 
binding is formed by the a-1 and a-2 domains of the alpha 
chain. Eight anti-parallel b-strands form the floor of the cleft 
while its sides are formed by two a-helices. The cleft is closed 
at each end: bound peptides are anchored at each end and bow 
in the middle. Crystallography shows that peptide amino acid 
side chains are accommodated by “pockets” within the binding 
groove of class I MHC molecules. Primary and secondary 
anchor residues are buried in a number of complementary 
pockets, which are designated A–F.14 T-Cell receptor (TCR) 
and TCR-pMHC structures show that the TCR alpha and beta 
chain variable regions form an immunoglobulin-type combining 
site with residues from complementary regions 1, 2, 3 making 
contact with a-1 and a-2 domains of the MHC, as well as with 
exposed amino acid side chains of the bound peptide.

We have recently developed an immunoinformatic technique 
for the prediction of peptide–MHC affinities, known as the 
Additive method, which is based on the Free-Wilson principle,15 
whereby the presence or absence of groups is correlated with 
biological activity. For a peptide, the binding affinity is thus 
represented as the sum of amino acid contributions at each 
position. We have extended the classical Free-Wilson model with 
terms, which account for interactions between amino acids side 
chains. Using literature data, we applied the additive method 
to peptides binding to several human class I,16–18 and class II 
alleles.19 In order to better understand the sequence dependence 
of peptide–MHC binding of the mouse MHC, we have now 

Table 1 List of peptides used in this study of the H2–Db mouse allele

No. Epitope Exp. log IC50 Pred. log IC50 Ref. No. Epitope Exp. log IC50 Pred. log IC50 Ref.

 1 AAAENAEAA 7.357 7.380 26 34 RSVINIVII 5.854 5.980 20
 2a AEDTNVSLI 3.357 5.732 24 35 SAIENLEYM 7.721 7.810 26
 3 AENENMRTM 5.712 6.400 20 36 SEVSNVQRI 5.797 5.710 20
 4 AMIENLEYM 7.620 7.990 26 37 SFYRNLLWL 6.542 6.690 22
 5 ASNENIDTM 8.699 8.200 21 38 SGVENPGGY 4.881 4.980 25
 6 ASNENMETM 7.750 7.960 20 39 SLLGNATAL 6.796 6.930 24
 7 ASNENMRTM 8.155 7.480 20 40 SLLYNLDLM 8.097 7.850 20
 8 CDFNNGITI 5.344 5.250 20 41 SMAENLEYM 7.222 7.080 26
 9 CKGVNKEYL 7.409 7.130 20 42 SMIANLEYM 6.848 6.990 26
10 FAPGNYPAL 8.091 7.900 20 43 SMIEALEYM 6.796 6.950 26
11 FCGVNSDTV 6.799 6.740 22 44 SMIENAEYM 7.523 7.420 26
12 FQLCNSYDL 7.886 8.030 24 45 SMIENLAYM 6.780 6.950 26
13 FQPQNGQFI 8.067 8.210 20 46 SMIENLEAM 7.699 7.450 26
14 FRGPNVVTL 5.925 5.700 20 47 SMIENLEYA 7.538 7.470 26
15a GFKSNFNKI 3.357 6.303 24 48 SMIENLEYM 7.871 7.570 26
16 IISHNFCNL 6.027 5.990 20 49 SSVIGVWYL 5.854 5.910 23
17a IKPSNSEDL 5.538 7.699 20 50 SSVVGVWYL 6.268 6.390 23
18 ISANNDSEI 6.056 6.190 24 51 SSVVNVWYL 7.244 7.220 23
19 ISNGNSDCL 6.503 6.990 24 52 TAGANPMDL 4.658 4.840 24
20 ISVSNPGDL 6.658 6.250 24 53a TALANTIEV 8.444 5.747 22
21 ITYKNSTWV 6.570 6.340 22 54 TGICNQNII 7.699 7.540 22
22 KAVYNFATC 6.484 6.440 27 55a TGKLNLENL 4.754 7.097 24
23 KICQNFILL 5.606 5.730 24 56 VENPGGYCL 4.475 3.940 25
24 LIDYNKAAL 5.714 5.960 20 57 VKYPNLNDL 5.878 6.090 20
25 LLVFNYPGI 5.287 5.270 24 58 VLSFNLGDM 4.202 4.570 24
26 LTFTNDSII 5.835 5.780 27 59 VLSTNGDTL 6.370 6.590 24
27 LTFTNDSSI 5.824 5.760 20 60 WLVTNGSYL 6.911 7.100 20
28 NGLWNLDVI 8.000 8.080 20 61 YAIENAEAL 7.658 7.610 26
29 QAPTNRWML 8.252 8.530 24 62 YAIENAKAL 6.959 7.060 26
30 QGINNLDNL 7.824 7.890 20 63 YAIKNAEAL 7.678 7.610 26
31a QLPPNSLLI 3.533 6.193 24 64 YASDNQAIL 6.319 6.300 24
32 RGVINIVII 5.692 5.590 20 65 YSQGNSGLM 6.051 5.930 24
33 RLIQNSLTI 6.967 6.610 22

a Peptides highlighted in bold and italics indicate where peptide has been removed (outlier) during calculation.
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Table 2 Amino acid abundance for the H2–Db, H2–Kb and H2–Kk alleles

  H2–Db H2–Kb H2–Kk

  1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

A 6 12 3 3 1 6 4 9 2 5  1 1 1 3 8  2 4 1 1 2 1 1 1
R 3 1  1  1 2 1  6  1 4  4 7  1 1 1 1 1 1 1 1
N 1  6 3 61  3 3  3 3  9  1 6  2 1 1 1 2 127 1 19
D  1 1 1  3 7 6  1 3  1  4   2 1 1 1 1 1 2 1
C 2 1 1 2   1 2 1 1   1  4         1 
Q 3 2 1 3  2 2   2 2 4 5  7 3  2 1 1 1 1 1 1 1
E  3  17   16 2   1 2 3  3   1 130 1 1 1 2 2 1
G 1 6 4 5 3 5 4 2  2 5 1 2 1 2 9  1 2 1 2 130 3 1 1
H    1      3 1 2 2 1  2  2 1 2 2 1 1 1 1
I 6 3 15 3  3 3 5 14 6 8 13 4 1 3 5 5 1 1 3 1 1 1 2 113
L 4 8 5 1  16 3 4 28 8 4 4 7 2 8 6 45 2 2 2 2 1 2 130 2
K 2 3 2 2  2 1 1  2 1  3  3 4  1 1 2 2 1 3 1 1
M  9    3 1 1 16 6 2  1    5 1 1 1 1 1 2 1 1
F 6 2 3 2  4  1  3 1 4 4 30 1 1  130 1 4 1 2 2 1 1
P   6 4  3 3    4 1 2  7 3  1 1 1 3 1 1 2 1
S 17 11 4 4  8 4 1  7 14 6 5 1 6 4  1 1 128 2 3 1 1 1
T 4 3  5  1 2 10  1 4 4  2 4   1 2 1 127 1 1 1 1
W 5  3 3  3 2 14 1 2 2 15 1 21  1  1 1 1 1 1 1 1 1
Y 1   1   4 2   1  3 1  1  1 1 1 2 1 1 1 1
V 4  11 4  5 3 1 3 4 6 4 4 1 2 2 7 1 1 1 2 2 2 2 5

Table 3 QSAR statistics of the additive models for three class I alleles

Allele  H2–Db H2–Kb H2–Kk

No. of peptides in original dataset  65 62 154
No. of peptides removed (outliers)  6 7 2
NC a  4 6 6
Cross-validation leave- one-out q2 b 0.401 0.454 0.456
 SEPc 0.840 0.894 0.565
Non-cross validation r2 0.946 0.989 0.933
 SEEd 0.252 0.128 0.198

a Optimal number of components. b q2 obtained after LOO-CV. c Standard error of prediction. d Standard estimate of error.

Fig. 1 Relative contributions of position-wise amino acids at each binding positions 1–9 for the H2–Db, H2–Kb and H2–Kk alleles. The contribution 
made by different individual amino acids at each position of the 9mer H2–Db, H2–Kb and H2–Kk binding peptide. The contribution is equivalent to 
a position-wise amino acid regression coefficient obtained by PLS regression (as described in the text).
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For the H2–Kb model, 62 octameric peptides were used for 
the initial training set (Table 5).22,24,27–30 7 peptides with residual 
values 2.0 log units were omitted, reducing the dataset to 55 
peptides. Based on the peptide sequences used here, the distri-
bution of amino acids at the eight peptide positions is shown 
in Table 2. LOO-CV parameters of the model are q2 = 0.454, 
SEP = 0.894 and NC = 6, while the non-cross validated para-
meters are r2 = 0.989 and SEE = 0.128 (Table 3). The amino 
acids contributions at each position according to this model 
are shown in Fig. 1 (stripy bars). H2–Kb binding peptides 
are usually octamers with major MHC anchor binding posi-
tions at positions 5 and 8.20–23 An extended motif, as defined 
by this model, is summarised in Table 4. From these results it 
is clear that the highest positive contributions at the anchor 
positions belong to Phe at position 5 and Val at the C-terminus 
(position 8). Both residues are hydrophobic. It is clear that 
hydrophobic amino acids are also concentrated at non-anchor 
positions: Ile, Gly, Tyr (position 2); Tyr, Phe (position 3) and 
Ala (position 4 and 6). Two polar amino acid residues (Ser and 
Lys) occupy the strong binding position 1, which interacts with 
a network of hydrogen bonding side chains directly involved in 
binding the N-terminus of the peptide.

For the H2–Kk model, 154 octameric peptides were used as 
the initial training set (Table 6).31–33 two peptides with residual 
values 2.0 log units were omitted, reducing the dataset to 152 
peptides. The distribution of amino acids at each of the eight 
peptide positions is shown in Table 2. The LOO-CV parameters 
for this model are q2 = 0.456, SEP = 0.565 and NC = 6, while the 
non-cross validated parameters are r2 = 0.933 and SEE = 0.198 
(Table 3). The quantitative contributions at each position are 
shown in Fig. 1 (white bars). The H2–Kk binding peptides were 
octameric but unlike the H2–Kb allele, its anchor positions are 
at P2 and P8.34–37 An extended motif, as defined by this model, 
is summarised in Table 4. For H2–Kk, the major amino acid 
residues at the anchor positions were Ala, Asp, Glu, Gly, Leu, 
Pro, Ser, Thr and Val (position 2) and Ala, Asn, Ile, Leu, Met, 
Phe, Ser, Thr, Trp and Val (position 8). There is a resemblance 
to the H2–Kb model in that many small polar or charged amino 
acids are associated negatively with pocket positions 1, 2, 3, 4, 
6 and 7. Similarly, there is an abundance of strong hydrophobic 
interactions in the same pockets. Lys seems to be a common 
weak binding amino acid in all binding pockets. It is somewhat 
amphipathic: most of the side chain is long and hydrophobic, 
whereas its terminal functional group is positively charged, 
which is why most of the side chain is buried and only the 
charged part is exposed.

As can be seen from Tables 1, 5 and 6, which show both experi-
mental and predicted affinities, most of the outliers are found 
at the ends of the IC50 value distribution, where fewer observa-
tions are available. For example, for the mouse H2–Db system, 
five out of 11 observations at the lower end of the distribution 
are outliers. This may indicate chance effects, or a lack of model 
reliability, or deviations from linearity in this region, or the exis-
tence of separate binding modes at different affinities, or, indeed, 
several other possibilities. While we are wary of dismissing out-
liers out of hand, as they sometimes provide valuable insights, 
currently the quality and quantity of data available precludes us 
from distinguishing between these alternative explanations.

We further exemplify the strength of our models through 
use of our online prediction algorithm MHCPred,38,39 which 
implements the additive method, comparing it with other 
internet-enabled prediction methods: RANKEP,40 BIMAS,41 
and SYFPEITHI.42 A data set of 20 new class I mouse H2–Kb 
and H2–Db epitopes, not used to train these models, were 
collected from the literature.43–54 The corresponding protein 
sequences, from which the epitopes were identified, were 
retrieved from either SWISS-PROT,55 or Genbank,56 and used 
as the input to the prediction algorithm. Algorithms used by 
the servers’ vary.3 SYFPEITHI42 uses peptide binding motifs 
for both class I and II MHC alleles available in the literature 
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and scores test peptide sequences accordingly. BIMAS41 and 
RANKPEP40 are based on quantitative matrices. BIMAS esti-
mates the binding affinities of  peptides by their half-time dis-
association rates with class I MHC proteins. RANKPEP uses 
Position Specific Scoring Matrices (PSSM) in the prediction. 
The PSSM is produced by an ‘ungapped’ block alignment of 
known MHC proteins and identifies sequence similarities among 
peptides binding to specific both class I and II MHC proteins. 
With 90% correct predictions, MHCPred was the most reliable 
algorithm method in the test, followed by SYFPEITHI, which 
had 65%. BIMAS (35% correct) and RANKPEP (10% correct) 
performed poorly. Compared to validation methods favoured 
by computer scientists, such as ROC analysis, the submission of 
whole protein sequences, as used in this assessment, mirrors how 
these algorithms would be used in practice, providing a useful 
and unbiased assessment of a algorithm’s ability of to predict 
T-cell epitope prediction in a “real life” situation. Our results 
are thus a powerful vindication and validation of the predic-
tive power of the additive method and the utility of both this 
method, and MHCPred, in predicting mouse epitopes.

Discussion
Herein we report the development of quantitative, systematic 
models, based on literature IC50 values, for the mouse class I al-
leles: H2–Db (nonamers), H2–Kb and H2–Kk (both octamers). 
The results are in good agreement with previous studies of the 
preferred primary anchor positions: 5 and 9 (nonamers), 2/5 and 
8 (octamers—H2–Kk and H2–Kb, respectively). All three models 
also agree with previous analyses of the preferred residue type 
at the anchor positions. For H2–Db: Asn at position 5 and Leu 
at position 9; for H2–Kb: Phe at position 5 and Val at position 8; 
and for H2–Kk: Glu, Pro, Gly (best three favoured residues) at 
position 2 and Ile, Val, Phe (best three favoured residues) at posi-
tion 8. The nonameric and octameric alleles show both similari-
ties and differences in amino acids preferred at various binding 
positions (Table 4). Preferences for primary anchors show 

certain similarities: all models exhibit some preference for small 
amino acids (H2–Db (Asn), H2–Kb (Val) and H2–Kk (Pro, Ala)), 
while C-terminal amino acids are strongly hydrophobic: H2–Db 
(Leu), H2–Kb (Val) and H2–Kk (Ile, Val). The most noticeable 
difference between the nonameric and octameric alleles is at 
position 5, where H2–Db exhibits a preference for polar Asn, 
while H2–Kb shows a preference for Phe (aromatic hydrophobic 
residue) and H2–Kk for Pro (small amino acid residue).

As well as refining and confirming our understanding of 
sequence dependence at anchor positions, our results throw new 
light on all other positions within the peptide. Although this 
study supports the importance of both primary and secondary 
anchor residues, it is clear that other positions also play a key 
role in peptide-binding.20 Table 4 shows a summary of non-
anchor residues associated with both favoured and disfavoured 
binding to all three alleles. Looking at Table 4, for weak binding 
peptides, hydrophobic residues are present at position 1 (Phe) 
and position 3 (Leu, Ile, Tyr, Phe) in abundance, and there is 
a probable electrostatic repulsion of both negatively charged 
polar side chains (Asp and Glu) and positively charged polar 
side chains (Lys, Arg and His).

Although the additive method is a quantitative, rather than 
a qualitative, prediction method, to explore our results further, 
we have compared the favoured binding anchor positions, as 
derived by the additive method, to existing literature anchor 
motifs, as collated in SYFPEITHI.42 Table 7 shows the favoured 
amino acid residues identified by our method (as shown in italics, 
with residues showing a cut-off  value of >+0.3 from Fig. 1) 
compared with the anchor residues from SYFPEITHI (as shown 
in bold) at positions P2, P3, P5, P8 and P9. The table indicates 
our preferences are in accord with those from SYFPEITHI. For 
example, the H2–Db allele shows Asn and Leu at the anchor 
positions P5 and P9, respectively; the H2–Kb allele has Tyr, Phe 
and Val at positions P3, P5 and P8, respectively; for the H2–Kk 
allele, additive method and SYFPEITHI motifs share Glu 
(P2) and Ile and Val (P8). Generally, SYFPEITHI motifs are a 
subset of our refined, improved, and updated extended-motifs.

Table 5 List of peptides used in the study of the H2–Kb mouse allele

No. Epitope Exp. log IC50 Pred. log IC50 Ref. No. Epitope Exp. log IC50 Pred. log IC50 Ref.

 1 RGYVYQGL 8.137 8.040 28 32a MWYWGPSL 5.125 7.581 30
 2 SIINFEKL 8.138 8.180 28 33 VLLDYQGM 5.477 5.620 30
 3 APGNYPAL 6.558 6.480 22 34 YSILSPFL 5.954 5.890 30
 4 FSVIFDRL 6.971 6.870 22 35 ANEGYDAL 4.924 4.880 24
 5 IGRFYIQM 7.770 7.840 22 36 DDEEYVIL 3.907 3.910 24
 6 KSSFYRNL 7.066 6.900 22 37 GTYHFTKL 7.745 7.710 24
 7 KVVRFDKL 7.310 7.490 22 38 HDQLFSLL 5.639 5.600 24
 8 LSYSAGAL 7.523 7.600 22 39 HPTLFKVL 6.208 6.150 24
 9a MGLIYNRM 8.337 6.213 22 40 HPYLYRLL 6.712 6.830 24
10 MITQFESL 7.398 7.780 22 41 ISFAFCQL 8.886 8.800 24
11 MMIWHSNL 6.564 6.480 22 42 LIFNYPGV 7.398 7.250 24
12 MNIQFTAV 7.602 7.650 22 43 LIYNYPGV 8.387 8.040 24
13 MNYYWTLL 7.284 7.220 22 44 LMSGFRQM 5.162 5.120 24
14 RFYRTCKL 7.377 7.220 22 45a LQQRYSRL 9.222 5.795 24
15 RGYVFQGL 8.509 8.480 22 46 LVYNYPGV 7.638 7.580 24
16 RSYLIRAL 7.174 7.340 22 47 NHPVFSPL 7.252 7.320 24
17 RTFSFQNI 8.013 7.980 22 48a NTVVFDAL 3.810 6.968 24
18 SSIEFARL 8.770 8.820 22 49 QESCYGRL 6.463 6.440 24
19 SSISFCGV 8.678 8.740 22 50a QPQNYLRL 4.287 9.493 24
20 SSLPFQNI 8.056 8.170 22 51 SIILFLPL 9.000 8.810 24
21 VYIEVLHL 7.699 7.650 22 52a SKLQYKII 3.810 6.955 24
22 VYINTALL 7.886 7.810 22 53 VDYNFTIV 7.444 7.300 24
23 AIIKFAAL 8.046 8.030 29 54 ALISFLLL 6.030 6.080 27
24 RGYKYQGL 7.854 7.870 29 55 GVYQFKSV 8.000 8.030 27
25 ASARFSWL 6.523 6.620 30 56 ISHNFCNL 6.431 6.650 27
26 CLIFLLVL 5.222 5.150 30 57 IVTMFEAL 7.174 7.010 27
27 FIIFLFIL 5.301 5.440 30 58 LVSIFLHL 5.553 5.430 27
28 FVQWFVGL 6.824 6.900 30 59 NSHHYISM 5.507 5.380 27
29a IIFLFILL 5.125 7.853 30 60 SQTSYQYL 5.729 5.850 27
30 ILSPFLPL 6.329 6.320 30 61 TSYQYLII 7.469 7.600 27
31 LSSIFSRI 5.477 5.520 30 62 YTVKYPNL 6.770 6.830 27

a Peptides highlighted in bold and italics indicate where peptide has been removed (outlier) during calculation.
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Table 6 List of peptides used in the study of the H2–Kk mouse allele

No. Epitope Exp. log IC50 Pred. log IC50 Ref. No. Epitope Exp. log IC50 Pred. log IC50 Ref.

 1 AESKSVII 6.648 6.410 31 78 FESTGNLY 6.010 6.200 32
 2 NEKSFKDI 6.910 6.290 31 79 FESTGNMI 7.612 7.620 32
 3 QTFVVGCI 6.796 6.460 31 80 FESTGNNI 7.521 7.740 32
 4 AESTGNLI 7.624 7.490 32 81 FESTGNPI 7.410 7.600 32
 5 DESTGNLI 7.712 7.960 32 82 FESTGNQI 7.612 7.620 32
 6 EESTGNLI 7.732 7.760 32 83 FESTGNRI 8.004 7.920 32
 7 FASTGNLI 7.429 7.560 32 84 FESTGNSI 7.612 7.620 32
 8 FDSTGNLI 7.814 7.350 32 85 FESTGNTI 7.652 7.650 32
 9 FEATGNLN 8.178 8.070 32 86 FESTGNVI 7.421 7.530 32
10 FEDTGNLN 8.199 7.930 32 87 FESTGNWI 7.974 7.900 32
11 FEETGNLN 8.028 8.130 32 88 FESTGNYI 7.793 7.760 32
12 FEFTGNLN 8.000 7.900 32 89 FESTGPLI 8.302 8.310 32
13 FEGTGNLN 8.265 8.140 32 90 FESTGQLI 7.920 8.010 32
14 FEHTGNLN 7.982 8.050 32 91 FESTGRLI 8.222 8.240 32
15 FEITGNLN 8.197 8.090 32 92 FESTGSLI 7.992 8.080 32
16 FEKTGNLN 7.904 7.570 32 93 FESTGTLI 7.922 8.010 32
17 FELTGNLN 8.343 8.380 32 94 FESTGVLI 8.023 7.870 32
18 FEMTGNLN 8.222 8.110 32 95 FESTGWLI 7.872 7.970 32
19 FENTGNLN 8.224 8.100 32 96 FESTGYLI 8.215 8.250 32
20 FEPTGNLN 8.043 8.300 32 97 FESTHNLI 7.836 7.890 32
21 FEQTGNLN 8.217 8.100 32 98 FESTINLI 7.887 8.020 32
22 FERTGNLN 8.300 8.170 32 99 FESTKNLI 7.304 7.470 32
23 FESAGNLI 8.031 7.950 32 100 FESTLNLI 7.898 8.070 32
24 FESDGNLI 7.890 7.640 32 101 FESTMNLI 7.888 7.930 32
25 FESEGNLI 7.972 8.090 32 102 FESTNNLI 7.748 7.320 32
26 FESFGNLI 8.085 8.170 32 103 FESTPNLI 8.141 8.130 32
27 FESGGNLI 7.985 8.270 32 104 FESTQNLI 7.819 7.870 32
28 FESHGNLI 8.248 8.300 32 105 FESTRNLI 7.679 7.830 32
29 FESIGNLI 8.239 8.290 32 106 FESTSNLI 7.821 7.880 32
30 FESKGNLI 7.978 8.190 32 107 FESTTNLI 7.821 7.790 32
31 FESLGNLI 8.403 8.280 32 108 FESTVNLI 7.912 7.830 32
32 FESMGNLI 8.040 8.140 32 109 FESTWNLI 7.832 7.880 32
33 FESNGNLI 7.880 8.010 32 110 FESTYNLI 7.460 7.600 32
34 FESPGNLI 8.042 7.950 32 111 FESVGNLI 8.230 8.170 32
35 FESQGNLI 8.094 8.180 32 112 FESWGNLI 7.989 7.930 32
36 FESRGNLI 8.095 8.190 32 113 FESYGNLI 8.099 8.180 32
37 FESSGNLI 8.046 7.990 32 114 FETTGNLN 8.232 8.110 32
38 FESTANLI 7.994 8.170 32 115 FEVTGNLN 8.223 8.110 32
39 FESTDNLI 7.743 7.800 32 116 FEWTGNLN 8.225 8.110 32
40 FESTENLI 7.583 7.690 32 117 FEYTGNLN 8.176 8.070 32
41 FESTFNLI 7.895 7.940 32 118 FFSTGNLI 5.421 5.490 32
42 FESTGALI 7.964 8.050 32 119 FGSTGNLI 7.846 7.560 32
43 FESTGDLI 7.683 7.870 32 120 FHSTGNLI 5.122 5.260 32
44 FESTGELI 7.593 7.780 32 121 FISTGNLI 6.329 6.200 32
45 FESTGFLI 8.267 8.350 32 122 FKSTGNLI 5.026 5.180 32
46 FESTGGLI 7.946 7.760 32 123 FLSTGNLI 7.088 6.930 32
47 FESTGHLI 7.997 7.920 32 124 FMSTGNLI 6.863 6.610 32
48 FESTGILI 8.098 8.150 32 125 FNSTGNLI 6.244 6.130 32
49 FESTGKLI 7.927 7.900 32 126 FPSTGNLI 8.113 7.590 32
50 FESTGLLI 8.079 8.130 32 127 FQSTGNLI 7.013 6.730 32
51 FESTGMLI 7.979 8.050 32 128a FRSTGNLI 4.192 6.758 32
52 FESTGNAI 7.602 7.610 32 129 FSSTGNLI 7.718 7.280 32
53 FESTGNDI 7.290 7.190 32 130 FTSTGNLI 7.547 7.030 32
54 FESTGNEI 7.541 7.650 32 131 FVSTGNLI 7.216 6.890 32
55 FESTGNFI 8.044 7.970 32 132 FWSTGNLI 5.325 5.420 32
56 FESTGNGI 7.209 7.300 32 133 FYSTGNLI 5.592 5.620 32
57 FESTGNHI 7.742 7.720 32 134 GESTGNLI 7.665 7.740 32
58 FESTGNII 7.551 7.650 32 135 HESTGNLI 7.607 7.610 32
59 FESTGNKI 7.159 7.260 32 136 IESTGNLI 7.715 7.960 32
60 FESTGNLA 7.455 7.600 32 137 KESTGNLI 7.308 7.470 32
61 FESTGNLD 5.010 5.420 32 138 LESTGNLI 7.716 7.640 32
62a FESTGNLE 4.707 6.563 32 139 MESTGNLI 7.716 7.780 32
63 FESTGNLF 7.848 7.630 32 140 NESTGNLI 7.736 7.510 32
64 FESTGNLG 6.051 6.230 32 141 PESTGNLI 7.426 7.140 32
65 FESTGNLH 6.000 6.190 32 142 QESTGNLI 7.727 7.800 32
66 FESTGNLI 8.046 7.860 32 143 RESTGNLI 7.544 7.420 32
67 FESTGNLK 5.010 5.420 32 144 SESTGNLI 7.641 7.560 32
68 FESTGNLL 7.737 7.720 32 145 TESTGNLI 7.535 7.650 32
69 FESTGNLM 7.212 7.130 32 146 VESTGNLI 7.545 7.350 32
70 FESTGNLN 7.000 7.320 32 147 WESTGNLI 7.740 7.820 32
71 FESTGNLP 5.919 6.120 32 148 YESTGNLI 7.740 7.800 32
72 FESTGNLQ 5.687 5.940 32 149 DGLGGKLV 7.959 8.630 33
73 FESTGNLR 5.232 5.590 32 150 FAFPGELL 7.022 7.410 33
74 FESTGNLS 7.525 7.370 32 151 FAFWAFVV 7.523 7.550 33
75 FESTGNLT 7.293 7.190 32 152 FLHPSMPV 7.149 7.430 33
76 FESTGNLV 7.626 7.830 32 153 HAIHGLLV 7.319 7.760 33
77 FESTGNLW 7.293 7.080 32 154 LEILNGEI 7.921 7.430 33
a Peptides highlighted in bold and italics indicate where peptide has been removed (outlier) during calculation.
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Each class I mouse MHC allele binds a mixture of structur-
ally diverse peptides, typically 8–10 amino acids in length, with 
each allele exhibiting defined peptide specificity. From our 
work,16–19,57–59 previous peptide binding experiments, and X-ray 
crystallographic studies of human class I MHC molecules, it is 
clear that the molecule binds short peptides, most of which are 
nonamers.60 Topologically position 1 corresponds to pocket A 
of the cleft of  the peptide-binding site on HLA-A*0201.14 
Anchor residues at position 2 and at the C-terminus (position 
9) are seen to be of primary importance for binding, where 
pocket B interacts with the side chain of the residue at posi-
tion 2. The structure of pocket A is mainly polar residues and 
consists of  a network of hydrogen bonding residues. A hydro-
phobic ridge cuts through the binding cleft forcing the peptide 
to arch between position 5 and the carboxyl-terminal residue 
(position 9) which are anchored into the D and F pockets in 
the floor of the cleft.61 Equivalent data for mice shows clear 
differences and significant similarities. The crystal structure of 
several mouse class I molecules has revealed that the peptide 
binding cleft is also closed at both ends, that the length of the 
cleft is similar for all class I molecules,62–66 and that the carboxyl-
terminal peptide position is an anchor residue deeply buried in 
the F pocket. Analysis of  the structure and binding results of 
the H2–Kb and H2–Kk octameric complex reveals that there is a 
strong preference for an aromatic and hydrophobic residues Tyr 
and Phe (H2–Kb) and Leu (H2–Kk) at positions 3 and 5 and for 
a strong hydrophobic residue Val (H2–Kb) and Ile, Val and Phe 
(H2–Kk) at position 8, which is in accordance to the studies of 
Falk.67 It is found that in H2–Kb the B pocket is large enough 
to accommodate a bulky Ile residue at position 2, which is in 
accordance with the crystal structure of the antigenic peptide 
from the ovalbumin complex OVA-8 (SIINFEKL). In H2–Kb 
and H2–Kk alleles, the results showed that Tyr, Phe and Leu are 
all favoured in position 3,61 which is situated in part of pocket D 
and would significantly deepen the depth and volume of the 
D pocket and is complementary to the pocket. The anchor 
carboxyl-terminal (position 8) prefers hydrophobic residues, 
which fall into pocket F.

While traditional two-anchor motifs can generate reasonable 
binding predictions,68 such motifs are clearly only a partial 
explanation of peptide–MHC affinity. Motifs are a deterministic 
method, giving yes or no answers, and have a significant error 
rate, missing many potential binders: peptides without dominant 
anchors can, and do, retain significant binding affinity. The 
sequences of binding peptides are very biased in terms of their 
amino acid composition.4 This is particularly true of anchor 
positions, which often favour hydrophobic sequences, and 
arises from pre-selection resulting in self-reinforcement. Motifs 
are often used to reduce the experimental workload within 
epitope discovery: sparse sequence patterns are matched and 
the corresponding subset of peptides tested, with an enormous 
resulting reduction in sequence diversity. More sophisticated 
methods, such as ours, complement the motif  approach, as they 
allow better identification of binders that do not fit the tight 
restrictions on allele anchors or whose non-anchors abolish 
binding. However, all efforts to generate reliable prediction 

methods are ultimately confounded by the data itself, as 
discussed below. Our methods probe the nature of binding and 
delineate the underlying structural trends upon which affinity 
is built, but only within our data set; they are less successful in 
extrapolating beyond it, thus reducing the universality of the 
resulting models. It is only through a synergistic interaction 
between experimental data gathering and in silico analysis—
designing, testing, and analysing new peptides in an iterative 
manner—that these limitations can be overcome.4

However, we must temper our confidence and enthusiasm 
with caution, watchfulness, and prudence. The peptide sets we 
use are larger than is typical for QSAR studies in the literature, 
at least for affinity, rather than ADME/tox, prediction. The 
peptides are larger in themselves, and their physical properties 
more extreme, being multiply charged, zwitterionic, and/or 
exhibiting huge ranges of lipophilicity. The sequences and 
properties of the peptides are also heavily biased. This results 
in part from processes of pre-selection that result in self-
reinforcement. As discussed above, simple motifs are often used 
to reduce the experimental burden of epitope identification: very 
sparse sequence patterns are use to match peptides, which are 
then tested, with an enormous concomitant reduction in peptide 
diversity. Moreover, affinity data is of  an intrinsically inferior 
quality: multiple measurements of the same peptide may vary 
by several orders of magnitude, some values are clearly wrong, 
a mix of different standard peptides are used in radioligand 
competition assays, experiments are conducted at different 
temperatures and over different concentration ranges. We are 
also performing a “meta-analysis”: almost certainly forcing 
many distinct binding modes into a single QSAR model. We are 
thus obliged to filter, albeit in a not altogether subtle manner, 
our data in order to attempt to remove outliers, which result 
from such inadequacies in the data. In an ideal world we would 
look at a variety of “internally rich” data, such as isothermal 
titration calorimetry, but to do this for all disease-related or 
frequent allele would be prohibitively time consuming and 
expensive, and to pursue this is beyond the scope of current 
methodology.

In order to obtain efficient immune responses with subunit 
vaccines, efficient adjuvant and delivery systems are required. 
However, ethical issues regarding the potential toxicity of 
human vaccines necessitates the use of experimental animals, 
such as mice, in order explore the nature of immunogenicity, 
i.e. T-cell responses, rather than simple MHC binding. The 
development of MHC affinity prediction algorithms for 
mice allows us to properly explore issues of predicting and 
manipulating immunogenicity, together with the opportunity 
to then test and validate such predictions experimentally. 
We will extend our efforts in this direction. Nonetheless, we 
will incorporate our present models into our web server for 
MHC-binding prediction: MHCPred, available at the URL: 
http://www.jenner.ac.uk/MHCPred.38,39

The results of  the present study have opened up new 
horizons in mouse immunoinformatics, overhauling present 
understanding of the structural strategy by which class I 
mouse molecules are able to bind peptides. As high throughput 

Table 7 Comparison of favoured binding positions between additive method and SYFPEITHI database

  P2  P3  P5  P8  P9

  Additive SYFPEITHI Additive SYFPEITHI Additive SYFPEITHI Additive SYFPEITHI Additive SYFPEITHI
  method  method  method  method  method

H2–Db     N N   L L, M, I
H2–Kb   Y, R, F Y F F, Y V V, L, M, I
H2–Kk E, A, D, E     I, V, A, I, V
  G, L, P,      N, L, M,
  S, T, V      F, S, T,
        W

Amino acid residues in bold represent well-tolerated anchors. Amino acid residues in italics represent favoured residues from additive method
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genomics reveals the sequences of pathogenic bacteria, viruses, 
and parasites, such an understanding will become increasingly 
important, aiding significantly the future discovery vaccines 
post-genomic discovery of reagents, diagnostics, and peptide 
and subunit vaccines.

Methodology
Additive method models were generated for three mouse class I 
alleles: H2–Db (nonamers), H2–Kb (octamers) and H2–Kk 
(octamers). For each allele, two models using the Additive 
method were developed: the first contained just amino acid 
contributions (the amino acids only model) and the second 
contained both amino acid contributions and side chain-side 
chain interactions (the amino acids and interactions model). 
As these two models were roughly equivalent in terms of  
statistical quality, we applied the principle of  Occam’s razor 
and sought the simplest explanation, choosing the amino 
acids only model, which will be discussed below. Models 
were derived using partial least squares (PLS) and validated 
using leave-one-out cross-validation (LOO-CV); each model 
being assessed using the cross-validated coefficient (q2

LOO), the 
standard error of  prediction (SEP) and the residual between 
experimental (IC50(exp)) and predicted (IC50(pred)) binding af-
finity. Residuals were classified into three groups: very well 
predicted peptides with |residuals| 1.0 log unit, well pre-
dicted peptides with |residuals| between 1.0 and 2.0 log units 
and poorly predicted peptides with |residuals| 2.0 log units. 
To achieve a more self-consistent model, a small number of  
poorly predicted peptides with |residuals| 2.0 log units were 
excluded iteratively until the highest residual fell below 2.0 log 
units. According to present QSAR practice, predictions within 
1.0 log unit are considered good.69–71 This would result in mean 
residuals of  around 0.5 log units. In ideal cases, QSAR methods 
allows for extrapolation in their predictions of  up to 0.3 log 
units.72 However, in our work, the experimental measurements 
we are trying to predict are much less accurate then those 
obtained for the smaller datasets typical in pharmaceutical 
applications. The experimental, or biological, error in these 
measurements is, in terms of  logs, much greater which is why 
in our case we use peptides that have a residual cut-off  value 
of  no more than 2.0 log units. The optimal number of  compo-
nents (NC) leading to the highest q2

LOO and the lowest SEP were 
used to derive the non-cross validated model. The non-cross 
validated models were assessed by the explained variance (r2) 
and standard error of  estimate (SEE). The QSAR statistics of  
the additive models for the three class I alleles are summarised 
in Tables 1, 5 and 6.

Peptide database and binding affinities

Peptides used in the study and their binding affinities were 
obtained from the JenPep database.73,74 The database is freely 
available at the URL: http://www.jenner.ac.uk/JenPep. The 
peptide sequences of  both nonamers and octamers were 
investigated in this study. The H2–Db allele set included 
65 nonamers, the H2–Kb allele set 62 octamers and the 
H2–Kk allele set 154 octamers. The binding affinity (IC50) 
was used to quantify the interaction of  the peptide and the 
MHC molecule. In this study the IC50 values were measured 
by a competition assay based on the inhibition of  binding of  
a radiolabelled standard peptide to a detergent-solubilised 
MHC molecule.75

Additive method

The IC50 values were converted to log(1/IC50), −log(IC50), 
or (pIC50) and used as a dependent variable in the QSAR 
regression. The classical Free-Wilson model was extended to 
allow for interactions between amino acid side chains. This 
means that the binding affinity of  a nonamer is represented 
by eqn. (1):

       

pIC const.50
1

9

1
1

8

2
1

7

3
1

6

= + + + + +
=

+
=

+
=

+
=

∑ ∑ ∑ ∑P PP PP PP

P

i
i

i i
i

i i
i

i i
i

ii i
i

i i
i

i i
i

i i
i

P PP PP PP PP+
=

+
=

+
=

+
=

∑ ∑ ∑ ∑+ + + +4
1

5

5
1

4

6
1

3

7
1

2

1 9  (1)

where const. is the peptide backbone contribution,
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is the sum of every third side-chain interaction and so on. The 
binding affinity will depend primarily on the contributions of 
amino acid side-chains at each position and their interactions 
between the adjacent and every second side-chain, e.g. both 
positions (1)–(2) and (1)–(3) interactions are possible between 
the side chains, thus resulting in eqn. (2) (amino acids and 
interactions models):
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If  the interaction terms are neglected, eqn. (2) is reduced to eqn. 
(3) (amino acids only model—as chosen in this study):
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Partial least squares, cross-validation and leave-one-out cross-
validation

Partial least squares (PLS),76 is an extension of multiple linear 
regression (MLR) that describes and/or predicts differences in 
one or more dependent variables from differences in descriptor 
values. The PLS method was implemented within the QSAR 
module using SYBYL 6.9.77 The experimental IC50 values 
(pIC50) were used as the dependent variable in the study. Both 
the column filtering and scaling were turned off  and the optimal 
number of components (NC) was obtained by cross-validation 
(CV),78 using SAMPLS.79 CV is an approach that benchmarks 
the predictivity of models and is preformed by dividing the 
total data set into a number of groups, developing several 
parallel models from the reduced data, and then predicting the 
biological activities of the excluded peptides. When the number 
of excluded groups is equal to the number of compounds in 
the set, the technique is called leave-one-out cross-validation 
method (LOO-CV). The predictive power of the model is 
validated using the following terms: cross-validated coefficient 
(q2), and the standard error of prediction (SEP) are defined in 
eqns. (4) and (5).

     
q i2

50 50
2

1

50 50

1 0= −
−

−
=
∑

.
( )

(

(exp) ( )

(exp) (

pIC pIC

pIC pIC

pred

mean ))
)

.

2

1

2

1 0

i

q

=
∑

=

−

Or simplified to

PRESS
SSQ

     
                                                                                                           
                                                                                                     (4)



3 2 8 2 O r g .  B i o m o l .  C h e m . ,  2 0 0 4 ,  2 ,  3 2 7 4 – 3 2 8 3 O r g .  B i o m o l .  C h e m . ,  2 0 0 4 ,  2 ,  3 2 7 4 – 3 2 8 3 3 2 8 3

where pIC50(pred) is a predicted value, pIC50(exp) is an actual or 
experimental value, pIC50(mean) is the best estimate of the mean 
of all values that might be predicted. The summations are over 
the same set of  pIC50 values. PRESS is the PRedictive Error 
Sum of Squares and SSQ is the sum of squares of pIC50 (exp) 
corrected for the mean.

                                       SEP
PRESS

=
−p 1

                                 (5)

where p is the number of the peptides omitted from the data 
set, also known as residuals (outliers).

The non-cross validated models were assessed using standard 
MLR validation terms, explained by variance r2, standard error 
of estimate (SEE) are defined in eqns. (6) and (7).
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PRESS

=
− −n c 1

                                 (7)

where n is the number of peptides and c is the number of 
components. In the present case, a component in PLS is an 
independent trend relating measured biological activity to 
the underlying pattern of amino acids within a set of  peptide 
sequences. Increasing the number of components improves 
the fit between target and explanatory properties; the optimal 
number of components corresponds to the best q2. Both SEP 
and SEE are standard errors of prediction and assess the 
distribution of errors between the observed and predicted values 
in the regression models.

Server comparison

MHCPred38,39 was compared with three other internet-
enabled prediction algorithms: RANKPEP,40 BIMAS,41 and 
SYFPEITHI,42 in order to examine and find T-cell epitopes 
in protein sequences. To avoid replicating data from existing 
databases, only epitopes that have been published within the 
last two years were used.43–54 The cut-off  points for evaluation 
were different for each algorithm; if  the epitope is above the 
cut-off, then the algorithm was scored as predicting the epitope. 
For RANKPEP and BIMAS default thresholds were used, 
which were 2 and 3% of generated peptide, respectively. Most 
algorithms listed all the generated peptides and their predicted 
binding affinities, but in real life situations, people are more 
interested in the first five or ten peptides as they are more likely 
to be the epitopes. SYFPEITHI does not give a suggested cut-
off  point, therefore in the second test the cut-off  was set to top 
30 peptides for both MHCPred and SYFPEITHI. For BIMAS, 
a peptide-MHC dissociation half-life of 5 minute was used.
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